Interim Results From the Phase 1B and Phase 2 TORREY Open-label Extension Study of Seralutinib in Pulmonary Arterial Hypertension

Olivier Sitbon¹, Sandeep Sahay², Pilar Escribano Subías³, Ronald L. Zolty⁴, John F. Kingrey⁵, Brittany Penn⁶, Irina Sobol⁷, Namita Sood⁸, Raymond L. Benza⁹, Richard N. Channick¹⁰, Kelly M. Chin¹¹, Robert P. Frantz¹², Anna R. Hemnes¹³, Luke S. Howard¹⁴, Vallerie V. McLaughlin¹⁵, Jean-Luc Vachiéry¹⁶, Roham T. Zamanian¹⁷, Matt Cravets¹⁸, Robert F. Roscigno¹⁸, David Mottola¹⁸, Ed Parsley¹⁸, Richard Aranda¹⁸, Lawrence S. Zisman¹⁸, Hossein-Ardeschir Ghofrani¹⁹ on behalf of the TORREY Study Investigators

¹Université Paris-Saclay / Hôpital Bicêtre, Le Kremlin-Bicêtre, France; ²Houston Methodist Hospital/Weill Cornell Medicine, Houston, TX, USA; ³University Hospital 12 de Octubre, Complutense University, Madrid, Spain; ⁴University of Nebraska Medical Center, Omaha, NE, USA; ⁵INTEGRIS Health Pulmonary Hypertension Center of Oklahoma, Oklahoma City, OK, USA; ⁶University of Utah Health, Salt Lake City, UT, USA; ⁷New York Presbyterian/Weill Cornell Medical Center, New York, NY, USA; ⁸University of California Davis Medical Center, Sacramento, CA, USA; ⁹Icahn School of Medicine at Mount Sinai, New York, NY, USA; ¹⁰UCLA Medical Center, Los Angeles, CA, USA; ¹¹UT Southwestern Medical Center, Dallas, TX, USA; ¹²Mayo Clinic, Rochester, MN, USA; ¹³Vanderbilt University, Nashville, TN, USA; ¹⁴ Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK; ¹⁵University of Michigan, Ann Arbor, MI, USA; ¹⁶Université Libre de Bruxelles, HUB - Hôpital Erasme, Brussels, Belgium; ¹⁷Stanford University School of Medicine, Stanford, CA, USA; ¹⁸Gossamer Bio, Inc., San Diego, CA, USA; ¹⁹Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH); Cardio-Pulmonary Institute (CPI); Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Medicine, Imperial College London, UK

Disclosures

Financial Relationships with "ineligible companies" within the past 24 months:

Company name: AOP Orphan

Type of relationship: Advisory Committee, Lecturer,

Research grant

Company name: Enzyvant

Type of relationship: Advisory Committee

Company name: Ferrer

Type of relationship: Advisory Committee, Lecturer,

research grant

Company name: Gossamer Bio, Inc.

Type of relationship: Advisory Committee, Manuscript

preparation

Company name: Janssen

Type of relationship: Advisory Committee, Lecturer,

Research grant, Other

Company name: Liquidia

Type of relationship: Advisory Committee

Company name: MSD

Type of relationship: Advisory Committee, Lecturer,

Research grant, Other

Company name: Respira

Type of relationship: Advisory Committee

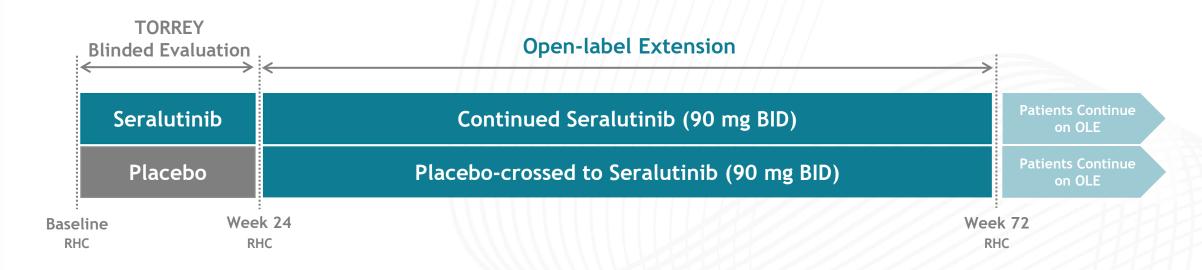
Company name: Roivant

Type of relationship: Advisory Committee

Background

- Inhibiting the PDGFR pathway reverses pulmonary vascular remodeling in animal models of PAH^{1,2}
- Safety concerns with oral imatinib in the IMPRES PAH trial led to efforts to develop novel TKIs with improved benefit-risk³
- Seralutinib is a distinct next-generation TKI with greater potency and selectivity as compared to imatinib, targeting PDGFRα/β, CSF1R, and c-KIT, thereby acting on inflammatory, proliferative, and fibrotic drivers of pulmonary vascular remodeling⁴
- Seralutinib is the only TKI intentionally developed for PAH as an inhaled treatment

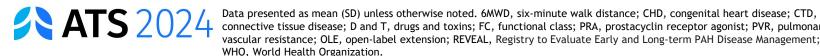
The Phase 2 TORREY Study Met The Primary Endpoint of PVR Improvement



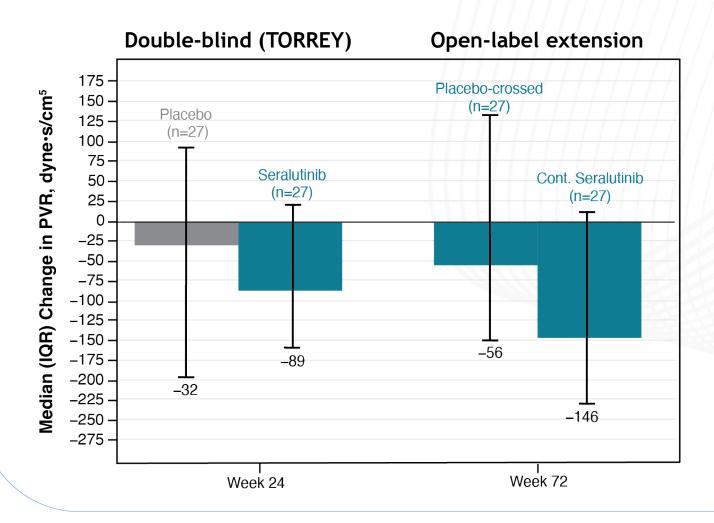
*p-value ≤ 0.05

- In prespecified analyses, the treatment effect on PVR and 6MWD was more pronounced in FC III and patients with REVEAL 2.0 risk score ≥ 6
- Inhaled seralutinib was well tolerated, avoiding many of the side effects observed with oral imatinib

Open-Label Extension: Methods



- Patient population: 73/80 patients who completed TORREY, 1/8 patients from a phase 1B study
- Objectives:
 - Ongoing, long-term safety & tolerability
 - Efficacy parameters, including hemodynamics at Week 72



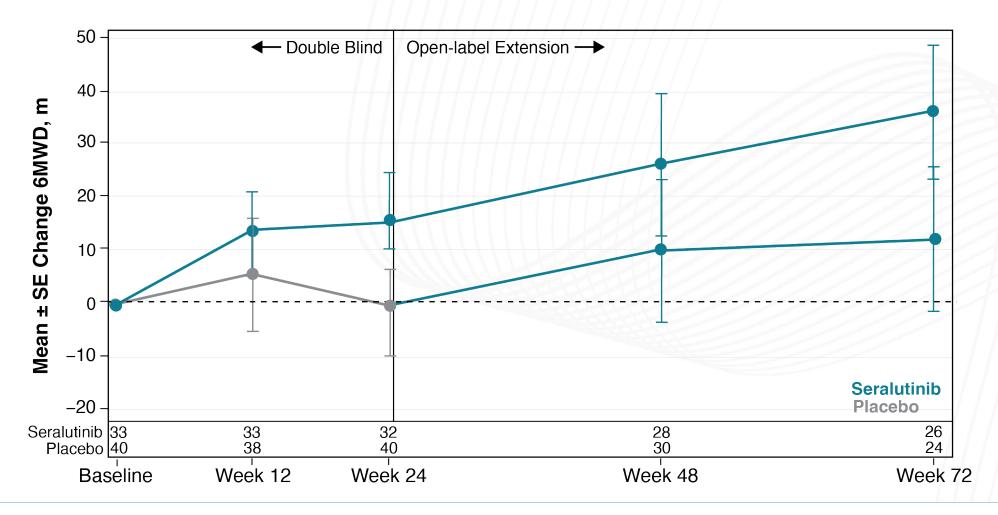
Baseline Disease Characteristics at Start of OLE

	Characteristic	Placebo-crossed (n=40)	Cont'd seralutinib (n=34)	Total (N=74)	
	Age at PAH diagnosis, y	41.4 (11.85)	42.8 (15.67)	42.0 (13.66)	
	Years since PAH diagnosis	9.54 (7.336)	7.30 (6.412)	8.51 (6.972)	
	PAH classification, n (%)				
	Idiopathic/Heritable	22 (55.0)/5 (12.5)	17 (50.0)/10 (29.4)	39 (52.7)/15 (20.3)	
	CTD / D and T, repaired CHD	9 (22.5)/4 (10.0)	2 (5.9)/5 (14.7)	11 (14.9)/9 (12.2)	
	Background PAH treatment, n (%)				
	Double/triple therapy	16 (40.0)/22 (55.0)	13 (38.2)/20 (58.8)	29 (39.2)/42 (56.8)	
	Parenteral prostacyclins/PRA	19 (47.5)	15 (44.1)	34 (45.9)	
	WHO FC II, n (%)	17 (42.5)	25 (73.5)	42 (56.8)	
	WHO FC III, n (%)	17 (42.5)	6 (17.6)	23 (31.1)	
	WHO FC IV, n (%)	3 (7.5)	0	3 (4.1)	
	REVEAL 2.0 risk score ≥ 6, n (%)	21 (52.5)	14 (41.2)	35 (47.3)	
\	PVR, dyne*s/cm ⁵	669.3 (257.71)	611.7 (279.75)	643.7 (267.36)	
	6MWD, m	408.7 (115.16)	422.3 (91.56)	415.0 (104.51)	
	NT-proBNP, ng/L	888.8 (1652.61)	464.1 (542.47)	691.4 (1274.22)	

PVR Continues to Improve With Seralutinib in the OLE

Median PVR Values, dyne*s/cm⁵

Visit	Placebo/ Placebo- crossed	Seralutinib/ Cont. seralutinib
Baseline	650.0	620.0
Week 24	647.0	505.0
Week 72	603.0	475.0



Favorable Cardiopulmonary Hemodynamics for OLE Patients Who Had RHC at Week 24 and Week 72

Median (IQR)	Placebo		Placebo- crossed	Seralutinib		Continued Seralutinib
n=27 Placebo n=27 Seralutinib	BL	Δ BL to W24	Δ BL to W72	BL	Δ BL to W24	Δ BL to W72
mPAP,	48.0	0.0	-1.0	51.0	-3.0	-4.0
mmHg	(44, 56)	(-6, 5)	(-9, 5)	(42, 56)	(-6, 0)	(-8, 3)
CI,	2.5	0.0	0.0	2.6	0.1	0.05
L/min/m ²	(2.1, 2.9)	(-0.3, 0.5)	(-0.3, 0.4)	(2.4, 3.0)	(-0.2, 0.4)	(-0.1, 0.6)
SVI,	36.36	-2.33	0.25	37.93	-0.35	0.81
mL/m ²	(32.00, 42.59)	(-6.55, 2.56)	(-4.73, 6.97)	(32.93, 43.06)	(-4.43, 4.83)	(-4.64, 8.46)
mRAP,	8.0	1.0	0.0	8.0	-1.0	-1.0
mmHg	(7,10)	(-3, 3)	(-3, 3)	(6, 11)	(-2, 2)	(-4, 1)

6MWD Increases in the OLE in the Continued-seralutinib Group and in the Placebo-crossed Group

Favorable Safety and Tolerability Observed in up to 127 Weeks

- Seralutinib was generally well tolerated during the OLE treatment period
- Similar frequency of ≥ 3x hepatic enzyme elevation in the OLE (5/74, 6.8%) and in TORREY (3/44, 6.8%) with seralutinib
- No new safety signals associated with TKIs

Incidence of TEAEs by preferred term: ≥ 10%

	Total (N=74)
Subjects with a TEAE, n (%)	71 (95.9)
Headache	19 (25.7)
Cough	18 (24.3)
COVID-19	17 (23.0)
Diarrhoea	15 (20.3)
Dyspnoea	13 (17.6)
Nausea	13 (17.6)
Nasopharyngitis	10 (13.5)
Arthralgia	9 (12.2)
Fatigue	8 (10.8)
Pyrexia	8 (10.8)
Rash	8 (10.8)

Summary

- The open-label extension data demonstrate a promising long-term efficacy profile up to 72 weeks, with continued improvement in PVR and exercise capacity
- Seralutinib was safe and well tolerated with no new safety signals over the OLE treatment period to date (up to 2.4 years of exposure)
- These data support inhaled seralutinib as a novel **anti-proliferative therapy** in clinical development for PAH
- The phase 3 PROSERA study of seralutinib in patients with PAH is now enrolling (NCT05934526)

