SERALUTINIB IMPROVES PULMONARY ARTERIAL BLOOD **VESSEL VOLUME DISTRIBUTION IN PULMONARY ARTERIAL HYPERTENSION (PAH): RESULTS OF THE TORREY PHASE 2 IMAGING SUBSTUDY**

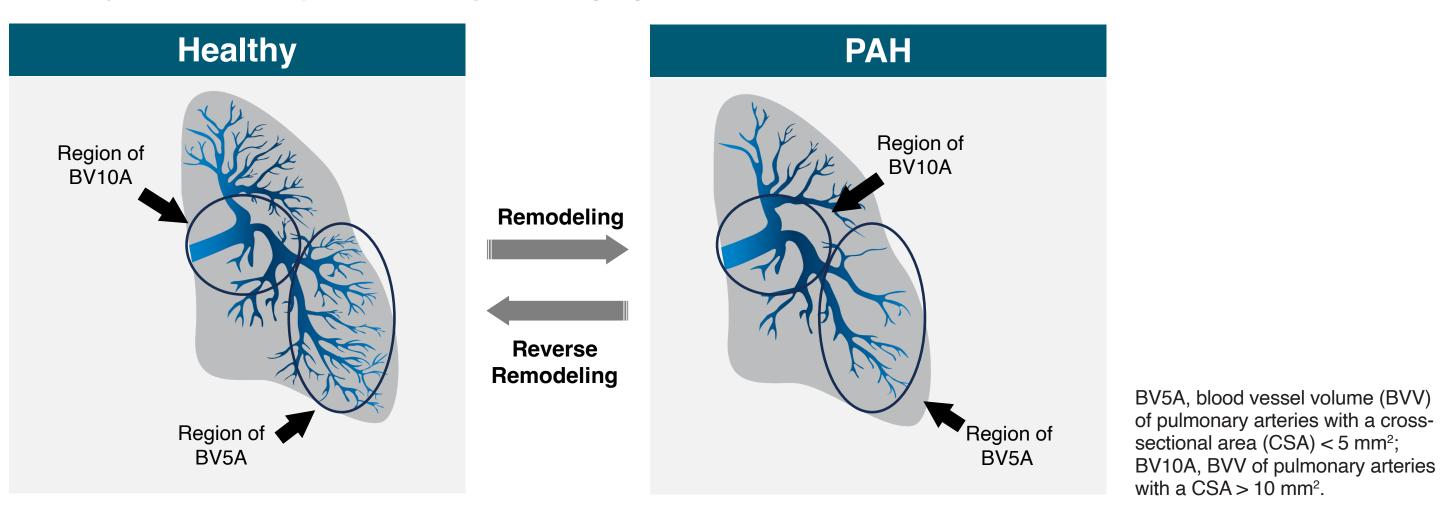
7th World Symposium on Pulmonary Hypertension Barcelona, Spain 29 June - 1 July 2024

Roham T. Zamanian¹, Murali M. Chakinala², Marion Delcroix³, Veronica Franco⁴, Pavel Jansa⁵, Sandeep Sahay⁶, Shelley M. Shapiro⁷, Namita Sood⁸, Leslie A. Spikes⁹, Wendy Stevens¹⁰, R. James White¹¹, Ronald L. Zolty¹², Jan de Backer¹³, Ben Lavon¹³, Patrick Muchmore¹³, Robert P. Frantz^{14,*}, Hossein-Ardeschir Ghofrani^{15,*}, Vallerie V. McLaughlin^{16,*}, Lawrence S. Zisman¹⁷, Farbod N. Rahaghi¹⁸

^{*}on behalf of the Seralutinib Steering Committee

¹Stanford University School of Medicine, Stanford Medicine, Stanford, CA, USA; ²Washington University Hospitals of Leuven, Belgium; ⁴The Ohio State University Wexner Medical Center, Columbus, OH, USA; ⁵General University Hospital, Prague, Czech Republic; ⁶Houston Methodist Hospital/Weill Cornell Medicine, Houston, TX, USA; ⁷Greater Los Angeles VA Healthcare System and David Geffen UCLA School of Medicine, Los Angeles, CA, USA; ⁸UC Davis Medical Center, Sacramento, CA, USA; ⁹University of Kansas Medical Center, Kansas City, KS, USA; ¹⁰The University of Melbourne at St. Vincent's Hospital, Fitzroy, VIC, Australia; ¹¹University of Rochester Medical Center, Rochester, NY, USA; ¹³FLUIDDA, Inc., New York, NY, USA; ¹⁴Mayo Clinic, Rochester, MN, USA; ¹⁵Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH); Cardio-Pulmonary Institute (CPI); Member of the German Center for Lung Research (DZL), Giessen, Germany; ¹⁶University of Michigan, Ann Arbor, MI, USA; ¹⁷Gossamer Bio, Inc., San Diego, CA, USA; ¹⁸Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA

BACKGROUND


• PAH is characterized by pulmonary vascular remodeling and loss of small distal pulmonary arteries ("pruning"), leading to increased pulmonary vascular resistance (PVR) and dilation of larger proximal vessels (Figure 1)

- The volume of blood distribution in pulmonary vessels can be quantified by computed tomographic (CT) imaging; pulmonary vascular pruning on CT has been shown to correlate with histologic pulmonary vascular remodeling¹
- Seralutinib, a highly potent inhibitor of PDGFRα/β, CSF1R, and c-KIT kinase pathways that activate inflammation, proliferation, and fibrosis, has the potential to treat pulmonary vascular remodeling²
- The phase 2 TORREY study of inhaled seralutinib in patients with WHO Group I PH met its primary endpoint of reduction in PVR at 24 weeks³ (NCT04456998)
- In this CT substudy of TORREY, the potential of seralutinib to reverse remodel the pulmonary vasculature in PAH patients was evaluated

METHODS

- Thin-section, volumetric, non-contrast chest CTs were performed, followed by automated pulmonary vascular segmentation
- Baseline and Week 24 blood vessel volumes (BVVs) were determined at distinct levels defined by vessel cross-sectional area (CSA) in 19 subjects on double or triple PAH-specific background therapy
- BVVs of pulmonary arteries with a CSA

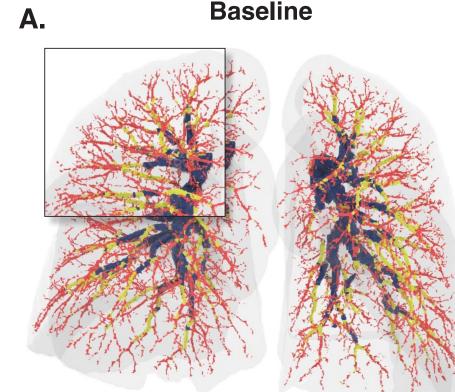
Figure 1. Changes in the pulmonary vasculature quantifiable by CT imaging

$< 5 \text{ mm}^2$ (BV5A) and $> 10 \text{ mm}^2$ (BV10A) were calculated

- The BV5A-to-BV10A ratio (BV510ARATIO) was used to express relative redistribution of pulmonary arterial BVV
- Linear regression was used to model the treatment effect

RESULTS

Table 1. Patient characteristics


Characteristic	Total	Characteristic	Total
Ν	19	PAH classification, n (%)	
Age, mean (SD), y	49.26 (12.07)	Idiopathic	10 (52.6)
Sex, n (%)		Heritable	2 (10.5)
Female	18 (94.7)	Associated with CTD	3 (15.8)
Male	1 (5.3)	Drug- or toxin-induced	3 (15.8)
BMI, mean (SD)	30.42 (7.59)	Associated with congenital shunts	1 (5.3)
Treatment, n (%)		WHO FC, n (%)	
Seralutinib	7 (36.8)	Class II	7 (36.8)
Placebo	12 (63.2)	Class III	12 (63.2)

BMI, body mass index; CTD, connective tissue disease; FC, Functional Class; PAH, pulmonary arterial hypertension; WHO, World Health Organization.

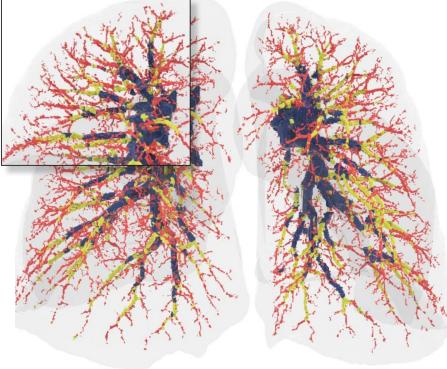
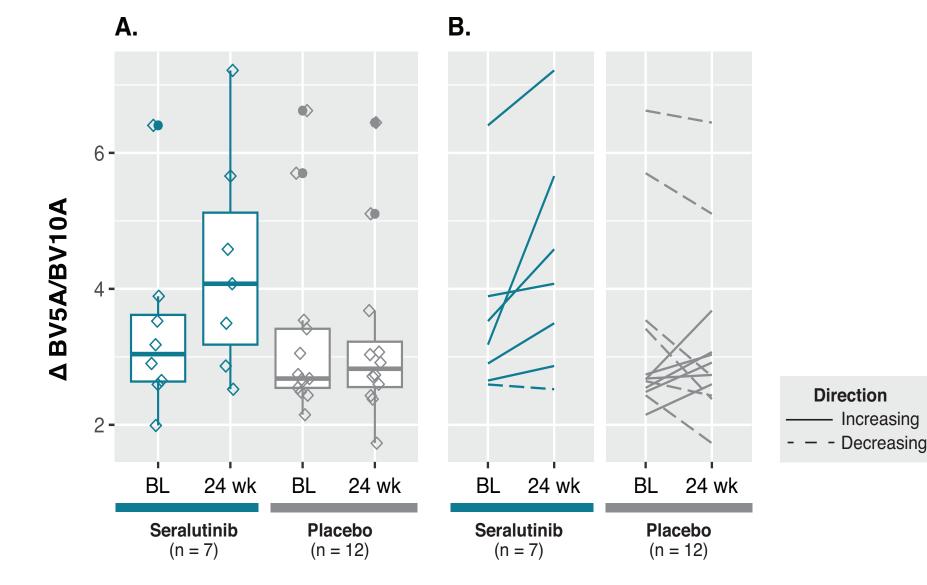
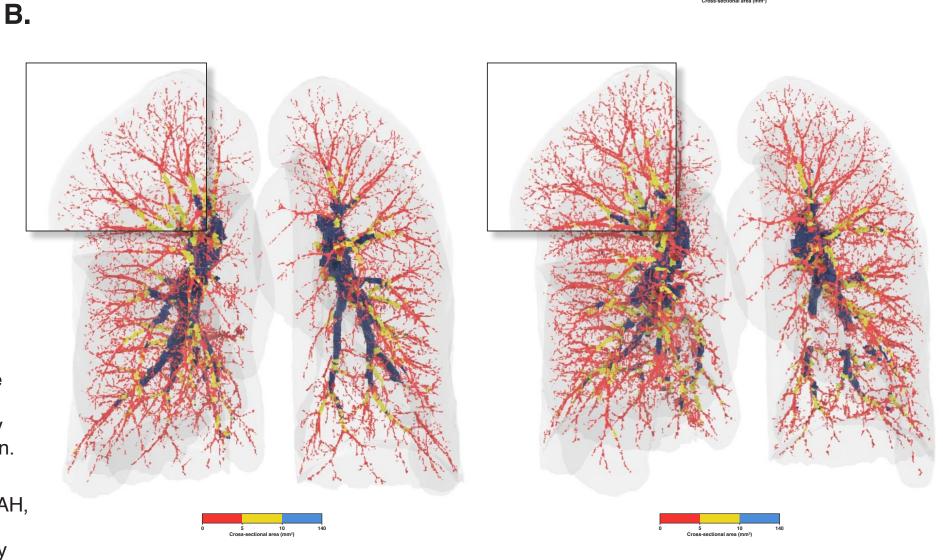

Figure 2. BV5A/BV10A ratio increased from Baseline (BL) to Week 24 in the

Figure 4. CT images at Baseline and Week 24

- A. 24-year-old placebo*treated* female patient with iPAH, FC II, receiving **PDE5** inhibitor and prostacyclin background treatment
 - Change in PVR: 283 dyne*s/cm⁵ (+65.4%)
 - Change in BV5A/BV10A ratio: -0.70 (-28.9%)



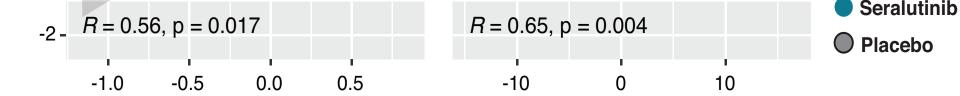
seralutinib group vs. placebo. A. Box plots show median values with upper and lower quartiles for BV5A/BV10A ratio. Least squares mean difference estimate (95% CI) for seralutinib vs. placebo was 0.845 (0.105, 1.585); p = 0.028. **B.** Changes in BV5A/ BV10A ratio from BL to Week 24 for individual patients. Linear regression models adjusted for BL values and treatment arm.


Figure 3. Change in BV5A/BV10A ratio from Baseline to Week 24 correlates with change in hemodynamic parameters

- B. 58-year-old seralutinib*treated* female patient with iPAH, FC II, receiving ERA, PDE5 inhibitor, and prostacyclin background treatment
- Change in PVR:
- -159 dyne*s/cm⁵ (-39.0%)
- Change in BV5A/BV10A ratio: +2.5 (+78.0%)

NOTE: The images shown are representative examples. The highlighted sections were chosen to illustrate changes in the pulmonary vasculature. Insets indicate 1.3x magnification.

CT, computed tomography; ERA, endothelin receptor antagonist; FC, Functional Class; iPAH, idiopathic pulmonary arterial hypertension; PDE5, phosphodiesterase 5; PVR, pulmonary vascular resistance.



CONCLUSIONS

- There was a significant improvement in the ratio of blood vessel volume in distal vessels relative to larger vessels (BV510ARATIO), consistent with a reverse remodeling effect of seralutinib
- The BV510ARATIO correlated with important measures of right ventricular-pulmonary artery coupling, as measured by pulmonary artery compliance and stroke volume
- To increase our understanding of the effect of seralutinib on pulmonary vascular remodeling, a CT substudy is planned for the phase 3 PROSERA study (NCT05934526)

References: 1 Synn AJ, et al. Pulm Circ. 2021;11(4):20458940211061284; 2 Galkin A, et al. Eur Respir J. 2022;60:2102356; 3 Frantz RP, et al. Lancet Resp Med; published online May 2, 2024. doi.org/10.1016/S2213-2600(24)00072-9

