INTERIM RESULTS FROM THE PHASE 1B AND PHASE 2 TORREY OPEN-LABEL EXTENSION STUDY OF SERALUTINIB IN PULMONARY ARTERIAL HYPERTENSION (PAH)

Olivier Sitbon¹, Sandeep Sahay², Pilar Escribano Subías³, Ronald L. Zolty⁴, John F. Kingrey⁵, Brittany Penn⁶, Irina Sobol⁷, Namita Sood⁸, Raymond L. Benza⁹, Richard N. Channick¹⁰, Kelly M. Chin¹¹, Robert P. Frantz¹², Anna R. Hemnes¹³, Luke S. Howard¹⁴, Vallerie V. McLaughlin¹⁵, Jean-Luc Vachiéry¹⁶, Roham T. Zamanian¹⁷, Matt Cravets¹⁸, Robert F. Roscigno¹⁸, Hossein-Ardeschir Ghofrani¹⁹ on behalf of the TORREY Study Investigators

¹Université Paris-Saclay / Hôpital Bicêtre, Le Kremlin-Bicêtre, France; ²Houston Methodist Hospital/Weill Cornell Medicine, Houston, TX, USA; ³University Hospital 12 de Octubre, Complutense University, Madrid, Spain; ⁴University of Nebraska Medical Center, Omaha, NE, USA; ³University Hospital 12 de Octubre, Complutense University, Madrid, Spain; ⁴University of Nebraska Medical Center, Omaha, NE, USA; ³University Hospital 12 de Octubre, Complutense University, Madrid, Spain; ⁴University of Nebraska Medical Center, Omaha, NE, USA; ³University Hospital 12 de Octubre, Complutense University, Madrid, Spain; ⁴University of Nebraska Medical Center, Omaha, NE, USA; ³University Hospital 12 de Octubre, Complutense University, Madrid, Spain; ⁴University of Nebraska Medical Center, Omaha, NE, USA; ³University Hospital 12 de Octubre, Complutense University, Madrid, Spain; ⁴University of Nebraska Medical Center, Omaha, NE, USA; ³University Hospital 12 de Octubre, Complutense University, Madrid, Spain; ⁴University Hospital 12 de Octubre, Complutense University, Madrid, Spain; ⁴University Hospital 12 de Octubre, Complutense University, Madrid, Spain; ⁴University, Madr ⁵INTEGRIS Health Pulmonary Hypertension Center of Oklahoma, Oklahoma City, OK, USA; ⁶University of Utah Health, Salt Lake City, UT, USA; ⁷New York Presbyterian/Weill Cornell Medical Center, New York, NY, USA; ⁸University of California Davis Medical Center, Sacramento, CA, USA; ⁹Icahn School of Medicine at Mount Sinai, New York, NY, USA; ¹⁰UCLA Medical Center, Los Angeles, CA, USA; ¹¹UT Southwestern Medical Center, Dallas, TX, USA; ¹²Mayo Clinic, Rochester, MN, USA; ¹³Vanderbilt University, Nashville, TN, USA; ¹⁴Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK; ¹⁵University of Michigan, Ann Arbor, MI, USA; ¹⁶Université Libre de Bruxelles, HUB – Hôpital Erasme, Brussels, Belgium; ¹⁷Stanford University School of Medicine, Stanford, CA, USA; ¹⁸Gossamer Bio, Inc., San Diego, CA, USA; ¹⁹Justus-Liebig-University Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health, Cardio-Pulmonary Institute; Member of the German Center for Lung Research (DZL), Giessen, Germany

BACKGROUND

- Inhibiting the PDGFR pathway reverses pulmonary vascular remodeling in animal models of PAH^{1,2}
- Safety concerns with oral imatinib in the IMPRES PAH trial have led to efforts to develop novel tyrosine kinase inhibitors (TKIs) with an improved benefit-risk profile³
- Seralutinib is a distinct next-generation TKI with greater potency and selectivity compared to imatinib, targeting PDGFRa/B, CSF1R, and c-KIT, thereby acting on inflammatory, proliferative, and fibrotic drivers of pulmonary vascular remodeling (Figure 1)⁴
- Seralutinib is the only TKI intentionally developed for PAH as an inhaled treatment
- The phase 2 TORREY study of inhaled seralutinib in patients with WHO Group 1 pulmonary hypertension (NCT04456998) met its primary endpoint by significantly reducing pulmonary vascular resistance (PVR)⁵

METHODS

- 73 (of 80) patients from TORREY and 1 (of 8) patients from a phase 1B study (NCT03926793) were enrolled
- All patients received inhaled seralutinib 90 mg twice daily by dry powder inhaler
- The aim of the study was to evaluate
 - Long-term safety and tolerability
 - Efficacy parameters, including hemodynamics at — Week 72
- PVR was measured by right heart catheterization (RHC) at Week 72 (Figure 2)
- All analyses are descriptive

Figure 2. Study schema.

7th World Symposium on Pulmonary Hypertension Barcelona, Spain 29 June - 1 July 2024

- Inhaled seralutinib was well tolerated, avoiding many of the side effects observed with oral imatinib
- Patients who completed TORREY had the option to enroll in an open-label extension (OLE) study (NCT04816604); interim results as of March 4, 2024, are presented

Blunt arrows indicate inhibition. BMPR2, bone morphogenetic protein receptor type 2; c-KIT, mast/stem cell growth factor receptor kit; CSF1R, colony stimulating factor 1 receptor; MΦ, macrophage; PAEC, pulmonary artery endothelial cell; PASMC, pulmonary artery smooth muscle cell; PDGFR, platelet-derived growth factor receptor.

RESULTS

At OLE entry, 34 patients continued on seralutinib (continued-seralutinib group) and 40 switched from placebo to seralutinib (placebo-crossed group)

Table 1. Baseline disease characteristics at start of OLE. Data presented as mean (SD) unless otherwise noted.

Characteristic	Placebo crossed (n=40)	Continued seralutinib (n=34)	Total (N=74)		
Age at PAH diagnosis, y	41.4 (11.85)	42.8 (15.67)	42.0 (13.66)		
Years since PAH diagnosis	9.54 (7.336)	7.30 (6.412)	8.51 (6.972)		
PAH classification, n (%)					
Idiopathic/Heritable	22 (55.0)/5 (12.5)	17 (50.0)/10 (29.4)	39 (52.7)/15 (20.3)		
CTD / D and T, repaired CHD	9 (22.5)/4 (10.0)	2 (5.9)/5 (14.7)	11 (14.9)/9 (12.2)		
Background PAH treatment, n (%)					
Double/triple therapy	16 (40.0)/22 (55.0)	13 (38.2)/20 (58.8)	29 (39.2)/42 (56.8)		
Parenteral prostacyclins/PRA	19 (47.5)	15 (44.1)	34 (45.9)		
WHO Functional Class, n (%)					
II	17 (42.5)	25 (73.5)	42 (56.8)		
III	17 (42.5)	6 (17.6)	23 (31.1)		
IV	3 (7.5)	0	3 (4.1)		
REVEAL 2.0 risk score ≥ 6, n (%)	21 (52.5)	14 (41.2)	35 (47.3)		
PVR, dyne∙s/cm⁵	669.3 (257.71)	611.7 (279.75)	643.7 (267.36)		
6MWD, m	408.7 (115.16)	422.3 (91.56)	415.0 (104.51)		
NT-proBNP, ng/L	888.8 (1652.61)	464.1 (542.47)	691.4 (1274.22)		

Figure 4. 6MWD increases in the OLE in the continued-seralutinib group and in the placebo-crossed group.

6MWD, six-minute walk distance; OLE, open-label extension; SE, standard error.

- No new safety signals associated with TKIs
- Seralutinib was generally well tolerated during the OLE treatment period

6MWD, six-minute walk distance; CHD, congenital heart disease; CTD, connective tissue disease; D and T, drugs and toxins; NT-proBNP, N-terminal pro-brain natriuretic peptide; OLE, open-label extension; PAH, pulmonary arterial hypertension; PRA, prostacyclin receptor agonist; PVR, pulmonary vascular resistance; REVEAL, Registry to Evaluate Early and Long-term PAH Disease Management; SD, standard deviation; WHO, World Health Organization.

Figure 3. PVR continues to improve in patients receiving seralutinib at OLE entry. A. Median (IQR) change in PVR. **B.** Median PVR values (dyne·s/cm⁵).

Visit	Placebo/ Placebo crossed	Seralutinib/ Continued seralutinib		
Baseline	650.0	620.0		
Week 24	647.0	505.0		
Week 72	603.0	475.0		

Cont, continued; IQR, interquartile range; OLE, open-label extension; PVR, pulmonary vascular resistance.

Similar frequency of \geq 3x hepatic enzyme elevation in the OLE (5 of 74 patients, 6.8%) and in TORREY (3 of 44 patients, 6.8%) with seralutinib

Table 3. Incidence of treatment-emergent adverse events (TEAEs) by preferred term ≥10%.

	Total (N=74)			
Patients with a TEAE, n (%)	71 (95.9)	Patients with a TEAE (<i>continued</i>)		
Headache	19 (25.7)	Nasopharyngitis	10 (13.5)	
Cough	18 (24.3)	Arthralgia	9 (12.2)	
COVID-19	17 (23.0)	Fatigue	8 (10.8)	
Diarrhoea	15 (20.3)	Pyrexia	8 (10.8)	
Dyspnoea	13 (17.6)	Rash	8 (10.8)	
Nausea	13 (17.6)			

CONCLUSIONS

- The open-label extension data demonstrate a promising long-term efficacy profile up to 72 weeks, with continued improvement in PVR and exercise capacity
- Seralutinib was safe and well tolerated, with no new safety signals over the OLE treatment period to date (up to 2.4 years of exposure)
- These data support inhaled seralutinib as a novel anti-proliferative therapy in clinical development for PAH
- The phase 3 PROSERA study of seralutinib in patients with PAH is now enrolling (NCT05934526)

References: 1 Schermuly RT, et al. J Clin Invest 2005; 115(10):2811-21. 2 Antoniu SA. Expert Opin Ther Targets 2012; 16(11):1055-63. 3 Hoeper MM, et al. Circulation 2013; 127(10):1128-38. 4 Galkin A, et al. Eur Respir J 2022; 60(6):210235. 5 Frantz RP, et al. Lancet Resp Med Published online May 2, 2024. doi: 10.1016/S2213-2600(24)00072-9

Table 2. Favorable cardiopulmonary hemodynamics for OLE patients who had RHC at Week 24 and Week 72.

Median (IQR) Placebo, n=27 Seralutinib, n=27	Placebo		Placebo crossed	Seralutinib		Continued seralutinib
	BL	Δ BL to W24	Δ BL to W72	BL	Δ BL to W24	Δ BL to W72
mPAP, mmHg	48.0	0.0	-1.0	51.0	-3.0	-4.0
	(44, 56)	(-6, 5)	(-9, 5)	(42, 56)	(-6, 0)	(-8, 3)
CI, L/min/m ²	2.5	0.0	0.0	2.6	0.1	0.05
	(2.1, 2.9)	(–0.3, 0.5)	(-0.3, 0.4)	(2.4, 3.0)	(-0.2, 0.4)	(–0.1, 0.6)
SVI, mL/m²	36.36	-2.33	0.25	37.93	-0.35	0.81
	(32.00, 42.59)	(-6.55, 2.56)	(-4.73, 6.97)	(32.93, 43.06)	(-4.43, 4.83)	(-4.64, 8.46)
mBAP . mmHa	8.0	1.0	0.0	8.0	-1.0	-1.0

Research supported by: Gossamer Bio, Inc.