REVERSE REMODELING AND ANTI-PROLIFERATIVE EFFECTS OF SERALUTINIB IN PAH PRECISION-CUT LUNG SLICES AND **PULMONARY ARTERY SMOOTH MUSCLE CELLS**

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

A.¹, Conde Camacho R.²; Sitapara R.³, Garcia E.³, Zisman L.S.³, Bruey J.M.³, Pullamsetti S.S.⁴, Schermuly R.T.⁴, Valasarajan C.⁴

BACKGROUND

- Pulmonary vascular remodeling in pulmonary arterial hypertension (PAH) involves abnormal muscularization of small pulmonary arteries
- Seralutinib is a novel, highly potent, and selective PDGFRa/B, CSF1R, and c-KIT tyrosine kinase inhibitor, targeting pathways that drive pulmonary artery vascular remodeling^{1,2}
- BMPR2 deficiency is associated with a genetic disposition to develop PAH. Seralutinib induces BMPR2 and its downstream SMAD1/5/8 signaling in SuHx rat model of PAH²
- Study of pulmonary artery smooth muscle cells (PASMCs) from patients with idiopathic PAH (IPAH) allowed investigation of the anti-proliferative effects of seralutinib in these phenotypically distinct cells
- Use of precision-cut lung slices (PCLS) from patients with IPAH provided an opportunity to directly investigate the potential reverse remodeling effects of seralutinib

METHODS

- In IPAH PASMCs, proliferation (BrdU assay), protein (pPDGFR, pERK, pSMAD1/5/8), and mRNA (BMPR2, ID1/2/3) levels were assessed (**Figure 1**)
- In IPAH PCLS, seralutinibin IPAH PCLS, seraluting induced changes in pulmonary artery muscularization (α-smooth muscle actin, αSMA), vessel thickness (histomorphometry), and apoptosis (TUNEL assay) were evaluated (Figure 2)
- Statistical analysis was performed using one-way analysis of variance (ANOVA), Dunnett's test

Figure 1. In Vitro Model: IPAH PASMCs

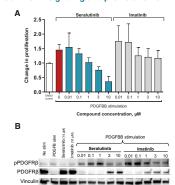
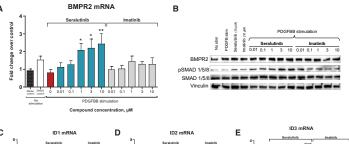
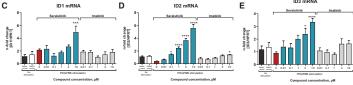
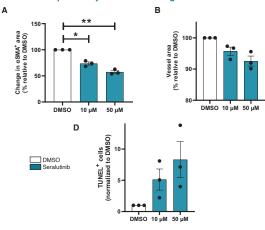


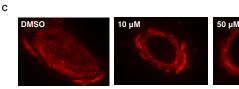
Figure 2. Ex Vivo Model: IPAH PCLS.

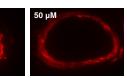


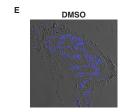

RESULTS

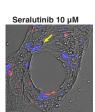
Seralutinib inhibited PDGFR signaling and proliferation of IPAH PASMCs

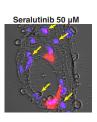


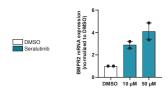

Seralutinib treatment induced BMPR2 signaling and downstream ID genes in IPAH PASMCs

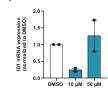


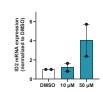



Seralutinib reverses pulmonary vessel remodeling in human IPAH PCLS



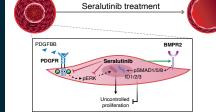






e in the αSMA area and vessel area, and induction of apoptosis. Bar graph showing change in (A) αSMA+ area, (B) ve grows point to TUNEL+ cells. Data represented as mean ± SEM (n=3 for each treatment group). Statistical analysis wa

Seralutinib induces BMPR2 and its downstream ID genes expression in IPAH PCLS



GRAPHICAL SUMMARY & CONCLUSIONS

Seralutinib treatment in

- Decrease in
- muscularization
- Decrease in vessel wall thickness · Increase in apoptosis
- **IPAH-derived PCLS shows**
- In IPAH PASMCs, seralutinib inhibits PDGFR signaling and proliferation
- Seralutinib induces BMPR2 mRNA and downstream ID genes in PAH **PASMCs**
- Seralutinib demonstrated reverse remodeling in PCLS derived from PAH patients
- · Inhaled seralutinib is in phase 3 development for PAH (PROSERA; NCT05934526)

References: 1 Pullamsetti SS, et al. Int J Mol Sci. 2023;24(16):12653. 2 Galkin A, et al. Eur Respir J. 2022;60(6):2102356.